

B.Sc. (PHYSICS) SEM – VI

C. U. SHAH UNIVERSITY WADHWAN CITY FACULTY OF SCIENCES

Syllabi (CBCS) of Physics WEF June 2016

Syllabi of Physics of B.Sc. Sem-VI WEF June 2016 - Page 1 of 15

FACULTY OF SCIENCES DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SUBJECT NAME: Quantum Mechanics

SEMESTER: VI

SUBJECT CODE: 4SC06QUM1

Teaching & Evaluation Scheme:-

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester								
					The		Theory Practical						
Th	Tu	Pr	Total		Sessio Exar		University Exam Internal		University	Total Marks			
					Marks	Hrs	Marks	Hrs	Pr	τw			
4	0	0	4	4	30	1.5	70	3				100	

Objectives:-The general purpose of this course is

• To expose the student knowledge of Quantum Mechanics.

Prerequisites:-Fundamental knowledge of Quantum Mechanics.

Sr.	Course Contents	Hours
No.		
1	Time dependent Schrodinger equation Time dependent Schrodinger equation and dynamical evolution of a quantum state, Properties of Wave Function, Interpretation of Wave Function Probability and probability current densities in three dimensions, Conditions for Physical Acceptability of Wave Functions, Normalization, Linearity and Superposition Principles, Eigenvalues and Eigen functions, Position, momentum & Energy operators, commutator of position and momentum operators, Expectation values of position and momentum. Wave Function of a Free Particle. Time independent Schrodinger equation Hamiltonian, stationary states and energy eigenvalues, expansion of an arbitrary wave function as a linear combination of energy Eigen functions, General solution of the time dependent Schrodinger equation in terms of	20
	linear combinations of stationary states	
2	General discussion of bound states in an arbitrary potential Continuity of wave function, boundary condition and emergence of discrete energy levels, application to one-dimensional problem-square well potential, Quantum mechanics of simple harmonic oscillator-energy levels and energy Eigen functions using Frobenius method. Quantum theory of hydrogen-like atoms Time independent Schrodinger equation in spherical polar coordinates, separation of variables for the second order partial differential equation, angular momentum operator and quantum numbers, Radial wave functions from Frobenius method, Orbital angular momentum quantum numbers I and m; s, p, d, shells (idea only)	18

3	Atoms in Electric and Magnetic Fields	12
	Electron Angular Momentum, Space Quantization, Electron Spin and Spin	
	Angular Momentum, Larmor's Theorem, Spin Magnetic Moment, Stern-	
	Gerlach Experiment, Zeeman Effect: Electron Magnetic Moment and	
	Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.	
4	Atoms in External Magnetic Fields: Normal and Anomalous Zeeman Effect.	10
	Many electron atoms: Pauli's Exclusion Principle, Symmetric and	
	Antisymmetric Wave Functions, Periodic table, Fine structure, Spin orbit	
	coupling, Spectral Notations for Atomic States, Total Angular Momentum,	
	Vector Model, Spin-orbit coupling in atoms-L-S and J-J couplings.	

Learning Outcomes:- After successful completion of this course, students have:

• Knowledge of Quantum Mechanics.

Books Recommended:-

- 1. 'A Text Book of Quantum Mechanics', P. M. Mathews and K. Venketeshan, Tata McGraw Hill.
- 2. 'Quantum Mechanics: Theory and Applications', A. Ghatak and S. Lokanathan, *MacMillan India Ltd.*
- 3. 'Quantum Mechanics', F. Schwabl, Narosa Publishing House.
- 4. 'Quantum Mechanics', G. Aruldhas, Prentice-Hall of India.
- 5. 'Introduction to Quantum Mechanics', David J Griffiths, 2nd Ed., Pearson.
- 6. 'Quantum Mechanics', Leonard I. Schiff, McGraw Hill Book Co.
- 7. 'Quantum Mechanics', Robert Eisberg and Robert Resnick, 2nd Ed., Wiley.
- 8. 'Quantum Mechanics', Bruce Cameron Reed, Jones and Bartlett Learning.
- 9. 'Quantum Mechanics for Scientists and Engineers', **D. A. B. Miller**, *Cambridge Univ. Press*.
- 10. 'Quantum Mechanics', Eugen Merzbacher, John Wiley and Sons, Inc.
- 11. 'Quantum Mechanics', Walter Greiner, 4th Ed., Springer.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. <u>www.physic.about.com</u>
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. <u>www.physlinc.com</u>
- 10. www.fearophysic.com
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SEMESTER: VI

SUBJECT CODE: 4SC06PNP1

SUBJECT NAME: Particle and Nuclear Physics Teaching & Evaluation Scheme:-

Teaching hours/week Credit **Evaluation Scheme/semester** Theory Practical Sessional University Total Th Tu Pr Internal Total University Marks Exam Exam Pr τw Marks Hrs Marks Hrs 4 0 0 4 4 30 1.5 70 3 ___ --100 ___

Objectives:-The general purpose of this course is

• To expose the student knowledge of Particle and Nuclear Physics.

Prerequisites:-Fundamental knowledge of particle and nuclear Physics.

Course outline:-

Sr.	Course Contents	Hours
No.		
1	Particle physics: Particle interactions, basic features, types of particles and its	15
	families. Symmetries and Conservation Laws: energy and momentum,	
	angular momentum, parity, baryon number, Lepton number, Isospin,	
	Strangeness and charm, concept of quark model, colour quantum number	
2	and gluons.	12
2	Radioactivity decay: (a) Alpha decay: basics of α -decay processes, theory of α amission. Compare factor. Concern Nuttell Jaw α decay spectroscopy. (b) β	12
	α -emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy, (b) β -	
	decay: energy kinematics for β -decay, positron emission, electron capture,	
	neutrino hypothesis, (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.	
3	Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of	18
3	reactions, Q-value, reaction rate, reaction cross section, Concept of	10
	compound and direct reaction, resonance reaction, Coulomb scattering	
	(Rutherford scattering).	
	Interaction of Nuclear Radiation with matter: Energy loss due to ionization	
	(Bethe-Block formula), energy loss of electrons, Cerenkov radiation, Gamma	
	ray interaction through matter, photoelectric effect, Compton scattering, pair	
	production, neutron interaction with matter.	
4	Detector for Nuclear Radiations: Gas detectors: estimation of electric field,	15
	mobility of particle, for ionization chamber and GM Counter. Basic principle	
	of Scintillation Detectors and construction of photo-multiplier tube (PMT).	
	Semiconductor Detectors (Si and Ge) for charge particle and photon	
	detection (concept of charge carrier and mobility).	
	Particle Accelerators: Accelerator facility available in India: Van de Graff	
	generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.	
•		

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Nuclear Physics, Nuclear reaction and their applications and Particle Physics.

Books Recommended:-

- 1. 'Electromagnetics', **B. B. Laud**, 2nd Edition, Wiley Eastern Ltd.
- 2. 'Introduction to Electrodynamics', David J. Griffiths, Prentice Hall of India.
- 3. 'Nuclear Physics An Introduction', S. B. Patel, New Age International.
- 4. 'Introduction to Nuclear Physics', H. Enge, Addison Wesley Pub. Com.
- 5. 'Nuclear Physics', D. C. Tayal, Himalaya Publisher.
- 6. 'Modern Physics', Kenneth Krane, John Wiley and Sons.
- 7. 'Nuclear Physics', Irvin Kaplan, 2nd Edition, Addison Wesley Pub. Com.
- 8. 'Nuclear Physics', S. N. Ghoshal, S. Chand and Company Ltd.
- 9. 'Introductory Nuclear Physics', Kenneth S. Krane, Wiley India Pvt. Ltd.
- 10. 'Concepts of Nuclear Physics', Bernard L. Cohen, Tata McGraw Hill.
- 11. 'Basic Ideas and Concepts in Nuclear Physics An Introductory Approach' K. Heyde, *IOP Publishing*.
- 12. 'Theoretical Nuclear Physics', J. M. Blatt and V. F. Weisskopf, Dover Pub. Inc.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. <u>www.physic.about.com</u>
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. www.ndrs.org. physic.com
- 9. www.physlinc.com
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SEMESTER: VI

SUBJECT NAME: Statistical Mechanics and Plasma Physics

SUBJECT CODE: 4SC06SMP1

Teaching & Evaluation Scheme:-

ching	hours	/week	Credit	Evaluation Scheme/semester								
				Theory			Theory Practical					
Tu	Pr	Total				University Exam Internal		University	Total Marks			
				Marks	Hrs	Marks	Hrs	Pr	TW			
0	0	4	4	30	1.5	70	3				100	
		Tu Pr		Tu Pr Total	Tu Pr Total Sessio Exar Marks	Tu Pr Total Marks Hrs	TuPrTotalTheoryTuPrTotalUniverExamExamExarMarksHrsMarks	TuPrTotalTheoryTuPrTotalUniversityExamExamExamMarksHrsMarks	Tu Pr Total Theory Tu Pr Total Sessional University Exam Exam Exam Integration Marks Hrs Marks Hrs	Tu Pr Total Theory Practi Sessional University Internal Exam Exam Internal Marks Hrs Marks Hrs Pr	Tu Pr Total Theory Practical Tu Pr Total Sessional University Internal Exam Exam Exam University University Marks Hrs Marks Hrs Pr	

Objectives:-The general purpose of this course is

• To expose the student knowledge of Statistical Mechanics and Plasma Physics.

Prerequisites:-Fundamental knowledge of Statistical Mechanics and Plasma Physics.

Sr.	Course Contents	Hours
No.		
1	Microcanonical Ensemble Microcanonical distribution, Microcanonical average, Equal a priori probability, Additive property of entropy, Entropy of a perfect gas in a Microcanonical ensemble, Gibbs paradox, Removal of Gibbs paradox, Thermodynamic quantities in a Microcanonical ensemble, Average energy per particle, Specific heat at constants volume, Sackur-Tetrode formula, Nernst's heat theorem.	15
2	Canonical Ensemble Canonical distribution, Canonical average, Canonical partition function, Maxwell-Boltzmann distribution of velocities, Maxwell-Boltzmann distribution of absolute velocity, Most probable velocity, Mean kinetic energy, Thermodynamic quantities in a canonical ensemble, Equivalence of Microcanonical and canonical ensembles. Grand Canonical Ensemble Grand Canonical distribution, Grand Canonical average, Grand Canonical partition function, Thermodynamic quantities in a Grand canonical ensemble.	20
3	 Three Distributions Maxwell-Boltzmann Distribution, Fermi-Dirac distribution, Bose-Einstein Distribution, Entropy of the gas, Evaluation of b, Evaluation of a, Condition for applicability of MB distribution. Applications of Maxwell-Boltzmann Distribution Energy distribution function, Energy distribution law, Partition function, Most probable energy, Total number of particles, Average energy, Velocity distribution function, Total number of particles, Most probable velocity, Average velocity and Root mean square velocity. 	15

4 Plasma Physics

10

Introduction, Interaction of Particles, Concept of Collisions, Excitation of Atoms and Molecules, Dissociation of Molecules, Ionization of Atoms and Molecules, Recombination and Photo Ionization, Excitation and Ionization by stages, Production of Plasma, Plasma Oscillations, Properties of Plasma, Plasma Radiation, Applications of Plasma.

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of Statistical Mechanics and Plasma Physics.

Books Recommended:-

- 1. 'Statistical Mechanics', B.K. Agarwal and Melvin Eisner, Wiley Eastern.
- 2. 'Fundamental of Solid State Physics', **B. S. Saxena, R. C. Gupta and P. N. Saxena**, *Pragati Prakashan*.
- 3. 'Fundamentals of Statistical Mechanics' B. B. Laud, New Age International Publishers.
- 4. 'Elementary Statistical Mechanics', S. L. Gupta and V. Kumar, Pragati Prakashan.
- 5. 'A textbook of Statistical Mechanics', Suresh Chandra, CBS Publishers.
- 6. 'Concepts of Modern Physics', Arthur Beiser, Tata McGraw Hill.
- 7. 'A Treatise on Heat Including Kinetic Theory of Gases, Thermodynamics and Recent Advances in Statistical Thermodynamics', **Meghnad Saha and B. N. Srivastava**, *Indian Press*, (1969).
- 8. 'Thermodynamics, Kinetic Theory, and Statistical Thermodynamics', **Francis W. Sears** and Gerhard L. Salinger, *Narosa Publication*.
- 9. 'Elements of Plasma Physics', S. N. Goswami, New Central Book Agency (P) Ltd.
- 10. 'Introduction to Plasma Physics', **F. F. Chen**, 2nd Ed., *Plenum Press*.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. www.physic.about.com
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. <u>www.physlinc.com</u>
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES

DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SUBJECT NAME: Sensor Technology

SEMESTER: VI

SUBJECT CODE: 4SC06SNT1

Teaching & Evaluation Scheme:-

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
					Theory Practical							
Th	Tu	Pr	Total		Sessio Exar	-	Univer Exar	•	Inte	rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	тw		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-The general purpose of this course is

- To expose the student knowledge of Transducer elements.
- To expose the student knowledge of Pressure measurements related transducers.
- To expose the student knowledge of Temperature measurements related transducers.
- To expose the student knowledge of Acoustic Measurement and Optical Fibre Sensors.

Prerequisites:-Fundamental knowledge of Instrumentation and Sensors.

Sr.	Course Contents	Hours
No.		
1	Analog Transducers	15
	Electromechanical Type Transducer, Potentiometric resistance type, Inductive	
	Type, Capacitive Type, Piezo- Electric Transducer, Dynamic Characteristics of	
	Piezo-Electric Transducers, Resistance Strain Gauges, Unbounded Strain	
	Gauge, Bonded Strain Gauge, Resistance Strain Gauge Bridges, Balanced	
	Bridge, Unbalanced Bridge, Ionization Transducers, Mechno-Electronic	
	Transducer, Opto-Electrical Transducer, Photo-emissive Transducer,	
2	Photoconductive Transducer, Photo-voltaic Transducer.	4 5
2	Digital Transducers	15
	Frequency domain transducer, Electromagnetic frequency domain transducer,	
	Opto-Electrical frequency domain transducer, vibrating string transducer Pressure Measurements	
	Introduction, Moderate Pressure Measurements, Manometers, High Pressure	
	Measurements, Low Pressure (Vacuum) measurements, McLeod Gauge,	
	Thermal conductivity or Pirani Gauge, Ionization Gauge, Knudsen Gauge.	
3	Temperature Measurements	15
	Measurements of Temperature, Non-Electrical Methods, Solid Rod	
	Thermometer, Bimetallic Thermometer, Electrical Methods, Electrical	
	Resistance Thermometer, Metallic Resistance Thermometers, Semiconductor	
	Resistance Sensors, Thermoelectric Sensors, Thermoelectric materials,	
	Radiation Methods, Total radiation pyrometer, Selective radiation pyrometer.	

4	Acoustic Measurement	15
	Microphones, Capacitor type microphone, Piezo-electric crystal type	
	microphone, Electrodynamic type microphone, Carbon microphone.	
	Miscellaneous Instruments	
	Measurements of environmental air pollution parameters, Orsat apparatus	
	for exhaust gas analysis, Gas chromatography, Non-dispersive infrared gas	
	analyzer, Smoke density measurements.	
	Optical Fibre Sensors	
	Optical Fibre Sensors, Advantages of Optical Fibre Sensors, Types of Optical	
	Fibre Sensors, Biosensors, Smart Sensors.	

Learning Outcomes:-After successful completion of this course, students have:

- Knowledge of Transducer elements.
- Knowledge of Pressure measurements related transducers.
- Knowledge of Temperature measurements related transducers.
- Knowledge of Acoustic Measurement and Optical Fibre Sensors.

Books Recommended:-

- 1. 'Instrumentation Measurement and Analysis', **B. C. Nakra and K. K. Chaudhary**, *Tata McGraw Hill Pub*.
- 2. 'Biomedical Instrumentation', **R. S. Khandpur**, *Tata McGraw Hill Pub*.
- 3. 'Basic Electronics (Solid State)', **B. L. Theraja**, *S. Chand and Company Ltd*.
- 4. 'Electronic Instrumentation and Measurement Techniques', W. D. Cooper and A. D. Helfrick, *Prentice-Hall of India Pvt. Ltd.*

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. <u>www.physic.about.com</u>
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. www.ndrs.org. physic.com
- 9. <u>www.physlinc.com</u>
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SUBJECT NAME: Computational Physics Teaching & Evaluation Scheme:-

SEMESTER: VI

SUBJECT CODE: 4SC06COP1

valuation Scheme/semester

Теа	ching	hours	s/week	Credit		er						
						Theory Practical						
Th	Tu	Pr	Total		Sessional University Exam Exam Internal				University	Total Marks		
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-The general purpose of this course is

• To expose the student knowledge of Computational Physics, Scientific Programming, Latex and visualization.

Prerequisites:-Fundamental knowledge of Computational Science.

Sr.	Course Contents	Hours
No.		
1	Algorithms and Flowcharts Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin (x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal.	15
2	Scientific Programming Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic, Examples from physics problems.	15
3	Control Statements Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DOWHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file, Examples from physics problems.	15

4 Visualization

Introduction to graphical analysis and its limitations, Introduction to Gnuplot, Importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot.

Learning Outcomes:-After successful completion of this course, students have:

Knowledge of Computational Physics, Scientific Programing and Latex and visualization.

Books Recommended:-

- 1. 'Introduction to Numerical Analysis', S. S. Sastry, 5th Ed, PHI Learning Pvt. Ltd.
- 2. 'Computer Programming in Fortran 77', V. Rajaraman, PHI Learning Pvt. Ltd.
- 3. 'Gnuplot in action: understanding data with graphs', Philip K Janert, Manning.
- 4. 'Schaum's Outline of Theory and Problems of Programming with Fortran', **S. Lipsdutz** and **A. Poe**, *McGraw Hill Book Co*.
- 5. 'Computational Physics: An Introduction', R. C. Verma, P. K. Ahluwalia and K. C. Sharma, New Age Inter. Pub.
- 6. 'A first course in Numerical Methods', **U. M. Ascher and C. Greif**, *PHI Learning Pvt. Ltd.*
- 7. 'Elementary Numerical Analysis', K. E. Atkinson, 3rd Ed., Wiley India Edition.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. www.wikipedia encyclopaedia
- 3. <u>www.physic.about.com</u>
- 4. www.physic.org
- 5. <u>www.Physicsclassroom.com</u>
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. www.ndrs.org. physic.com
- 9. <u>www.physlinc.com</u>
- 10. www.fearophysic.com
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SEMESTER: VI

SUBJECT CODE: 4SC06BIS1

SUBJECT NAME: Basic Instrumentation Skills Teaching & Evaluation Scheme:-

Teaching hours/week Credit **Evaluation Scheme/semester** Theory Practical Sessional University Total Th Tu Pr Total Internal Exam University Marks Exam Marks Marks Pr τw Hrs Hrs 4 0 0 4 4 100 30 1.5 70 3 ___ ---___

Objectives:-The general purpose of this course is

• To expose the student knowledge of Basic Instrumentation Skills.

Prerequisites:-Fundamental knowledge of Basic Instrumentations.

Sr.	Course Contents	Hours
No.		
1	 Basic of Measurements: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier-amplifier, Block diagram ac millivoltmeter, specifications and their significance. 	15
2	Cathode Ray Oscilloscope Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only-no mathematical treatment), brief discussion on screen phosphor, visual persistence and chemical composition. Time base operation, synchronization. Front panel controls, Specifications of a CRO and their significance, Use of CRO for the measurement of voltage (dc and ac frequency, time period, Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.	15
3	 Signal Generators and Analysis Instruments Block diagram, explanation and specifications of low frequency signal generators, pulse generator, and function generator, Brief idea for testing, specifications, Distortion factor meter, wave analysis. Impedance Bridges & Q-Meters Block diagram of bridge, working principles of basic (balancing type) RLC bridge, Specifications of RLC bridge, Block diagram & working principles of a Q-Meter, Digital LCR bridges. 	15

4 Digital Instruments

Principle and working of digital meters. Comparison of analog and digital instruments, Characteristics of a digital meter, Working principles of digital voltmeter.

Digital Multimeter

Block diagram and working of a digital multimeter, Working principle of time interval, frequency and period measurement using universal counter/frequency counter, time- base stability, accuracy and resolution.

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of basics of instrumentations.

Books Recommended:-

- 1. 'A text book in Electrical Technology', B. L. Theraja, S. Chand and Co.
- 2. 'Performance and Design of AC Machines', **M. G. Say**, *ELBS Ed*.
- 3. 'Digital Circuits and Systems', K. R. Venugopal and K. Shaila, Tata McGraw Hill.
- 4. 'Logic circuit design', Shimon P. Vingron, Springer.
- 5. 'Digital Electronics', Subrata Ghosha, Cengage Learning.
- 6. 'Electronic Devices and Circuits', S. Salivahanan and N. S. Kumar, Tata McGraw Hill.
- 7. 'Electronic Circuits: Handbook of Design and Applications', **U. Tietze and Ch. Schenk**, *Springer*.
- 8. 'Electronic Devices', **Thomas L. Floyd**, 7th Ed., *Pearson India*.

E-Resources:-

- 1. <u>http://pms.iitk.ernet.in/wiki/index.php/Physics</u>
- 2. www.wikipedia encyclopaedia
- 3. <u>www.physic.about.com</u>
- 4. <u>www.physic.org</u>
- 5. www.Physicsclassroom.com
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. www.ndrs.org. physic.com
- 9. <u>www.physlinc.com</u>
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.

FACULTY OF SCIENCES DEPARTMENT OF PHYSICS

COURSE: B.Sc.

SUBJECT NAME: Physics Practical-VI

SEMESTER: VI

SUBJECT CODE: 4SC06PPR1

Teaching & Evaluation Scheme:-

Teaching hours/week				Credit	Evaluation Scheme/semester							
		Theory							Practi			
Th	Tu	Pr	Total		Sessional Exam		University Exam		Internal		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	τw		
0	0	6	6	3					15	15	70	100

Objectives:-The general purpose of this course is

• To expose the student knowledge of Practical related to theory.

Prerequisites:-Fundamental knowledge of Physics Practical.

Course outline:-

Sr. No.	Course Contents						
1	To study the characteristics of a LDR.						
2	Construction of a Michelson's Interferometer or a Fabry-parot Interferometer.						
3	Recording and reconstruction of holograms.						
4	To measure the numerical aperture of an optical fibre.						
5	To observe the loading effect of a multimeter by measuring voltage across a low						
	resistance and high resistance.						
6	Measurement of voltage, frequency, time period and phase angle using a CRO.						
7	Measurement of rise, fall and delay time using a CRO.						
8	Measurement of R, L, and C using a LCR bridge/ Universal bridge.						
9	To measure (a) voltage, (b) Frequency of a periodic waveform using a CRO.						
10	To study the Lissajous figures.						
11	To study the energy band gap of a thermistor.						
12	To study UJT as a relaxation oscillator.						
13	To determine the wavelength of sodium light using Newton's rings.						
14	To study the damped simple harmonic motion.						
15	To determine the acceleration due to gravity by Kater's pendulum.						
16	Determination of thickness of air film and wavelength of light using spectromet						
	(Fabry-Parot etalon).						

* 15% of new experiments can be introduces AND/OR replaced as per the need, with the permission of the Head.

Learning Outcomes:-After successful completion of this course, students have:

• Knowledge of practical's and its application in various fields.

Books Recommended:-

- 1. 'B. Sc. Practical Physics', C. L. Arora, S. Chand and Company Ltd.
- 2. 'Advanced Practical Physics', M. S. Chauhan and S. P. Sing, Pragati Prakashan.
- 3. 'Experimental Physics', University Granth Nirman Board, (Gujarati Medium).
- 4. 'Physics through experiments Vol. I & II', **B. Saraf et al.**, *Vikas Publishing House*.
- 5. 'Advanced Practical Physics', S. L. Gupta and V. Kumar, Pragati Prakashan.

- 6. 'An advanced course in practical Physics', **D. Chattopadhyay and P. C. Rakshit**, *New Central Book Agency Pvt. Ltd.*
- 7. 'Electronic Laboratory Primer', **Poorna Chandra and Sasikala**, *S. Chand and Company Ltd*.
- 8. 'Advanced Practical Physics for Students', **B. L. Wosnop and H. T. Flint**, *Asia Publishing House*.
- 9. 'Advanced Level Physics Practicals', **Michael Nelson and Jon M. Ogborn**, 4th Ed., *Heinemann Educational Publishers*.
- 10. 'Engineering Practical Physics', **S. Panigrahi and B. Mallick**, *Cengage Learning India Pvt. Ltd.*
- 11. 'A Text Book of Practical Physics', Indu Prakash and Ramakrishna, 11th Ed., *Kitab Mahal*.
- 12. 'A Laboratory Manual of Physics for Undergraduate Classes', **D. P. Khandelwal**, *Vani Publication*.
- 13. 'Basic Electronics: A Text Lab Manual, P. B. Zbar, A. P. Malvino and M. A. Miller, McGraw Hill.

E-Resources:-

- 1. http://pms.iitk.ernet.in/wiki/index.php/Physics
- 2. <u>www.wikipedia encyclopaedia</u>
- 3. <u>www.physic.about.com</u>
- 4. <u>www.physic.org</u>
- 5. www.Physicsclassroom.com
- 6. www.howstuffwork.com
- 7. www.colorado.edu/physics/2000
- 8. <u>www.ndrs.org. physic.com</u>
- 9. <u>www.physlinc.com</u>
- 10. <u>www.fearophysic.com</u>
- 11. www.hyperphysics.com

- 1. Hyper Physics.
- 2. Encyclopaedia of Science (D. K. Multimedia).
- 3. Physics Encyclopaedia.
- 4. Virtual Physics Junior (Original PC CD Rom).
- 5. Encyclopaedia Britannica-2008.